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Abstract

Nearest-neighbor communication is at the heart of many high-performance parallel computations.
We report on the performance of such communication on the Oak Ridge Leadership Computing Facility
system Summit in the context of the PETSc communication module. The analysis in this report includes
basic Ping-Pong point-to-point communication and regular and irregular nearest-neighbor communica-
tion. We evaluated PETSc communication performance in these patterns. We also discussed various
synchronization models when using GPU-aware MPI.

1 Introduction

We report on the performance of the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[2, 3] communication infrastructure using basic Ping-Pong point-to-point communication and regular and
irregular nearest-neighbor communication on the IBM/NVIDIA Summit computing system [11] at the Oak
Ridge Leadership Computing Facility (OLCF). This report is a continuation of Evaluation of PETSc on
a Heterogeneous Architecture, the OLCF Summit System: Part I – Vector Node Performance [8] that
introduces the Summit architecture and analyzes simple on-node performance characteristics. This report
builds on the previous report’s analysis and will not repeat the detailed material. Part III will continue the
analysis in this report for unstructured mesh communication for partial differential equations.

The planned U.S. Department of Energy exascale computing systems [10] have designs similar to that of
Summit. Thus, having a well-developed understanding of Summit is essential in order to prepare for these
systems. This document is not intended to provide a strict benchmarking of the Summit system; instead, the
intention is to develop an understanding of systems similar to Summit in order to guide PETSc development.

2 The Summit System and Experimental Setup

Figure 1 shows the basic communication pathways of a Summit compute node. Each node has two CPU
sockets, each containing one IBM Power9 CPU accompanied by three NVIDIA Volta V100 GPUs. The
CPUs and GPUs are connected by NVIDIA’s NVLink interconnect, which has a bidirectional bandwidth
of 50 GB/s. Communication between the two CPUs is provided by IBM’s X-Bus, with a bidirectional
bandwidth of 64 GB/s. Each CPU also connects to a single Mellanox InfiniBand ConnectX-5 (EDR IB)
network interface card (NIC) through a PCIe Gen4 x8 bus with a bidirectional bandwidth of 16 GB/s. The
NIC has an injection bandwidth of 25 GB/s.

PETSc uses MPI for communication between processes. When data is in the GPU memory, PETSc can
copy the data to the CPU memory, perform the communication with regular MPI on the CPUs, and then
copy the received data to the GPUs. The preferred approach, however, is to use CUDA-aware MPI, with
which PETSc can pass GPU address pointers directly to MPI routines. This report focuses on this approach
because it provides better performance than does copying the data to the CPU memory. A high-quality
CUDA-aware MPI implementation would use NVIDIA’s GPUDirect point-to-point (P2P) and remote direct
memory access (RDMA) technologies. With GPUDirect P2P, data can be directly copied between the
memories of two GPUs within a node. With GPUDirect RDMA, GPUs can communicate directly to the
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Figure 1: Diagram of a Summit node with communication pathway[6]. There are two IBM Power9 CPUs
(P9), with each attached to three NVIDIA V100 GPUs.

NIC and send or receive data without staging in the CPU memory. The former is useful in MPI intranode
communication, and the latter is useful in MPI inter-node communication.

The NIC that connects the node to the parallel network is connected to a programmable “local network”
that connects it to the CPU memory as well as the GPU memory. This combination of interconnects means
that the parallel communication latency and bandwidth (see the first report [8]) are limited by the NIC,
the local network, the NVLinks from the CPU to the local network, and the GPU memory but not the
CPU memory. However, CUDA-aware MPI calls (send, receive, and waits) must be called by code running
on the CPU cores. Ongoing research focuses on triggering the MPI communication from within CUDA
kernels to avoid the extra CPU-to-GPU operations, but this capability is not currently available. The
total communication time is a combination of the physical/software latencies and bandwidths of the various
hardware components plus the latencies and bandwidths induced by the software stack.

3 MPI Point-to-Point Latency on Summit

In [7], the authors evaluated MPI point-to-point latency and bandwidth on a GPU-enabled OpenPower sys-
tem similar to Summit, using three MPI implementations: MVAPICH2-GDR, OpenMPI, and IBM Spectrum
MPI. In this section, we repeat their latency experiments on Summit. We use only Spectrum MPI 1 since
it is the only supported MPI on the machine; the others are difficult to install and use. Measuring MPI
performance on Summit is not the purpose of this report. What we want to know is what communication
performance PETSc can provide, since PETSc users, and PETSc code itself, usually do not directly call
MPI; instead, they access it through PETSc application programming interfaces.

We used osu latency from the OSU Microbenchmarks 5.6.2 [9], which can measure latency with CPU or
GPU buffers. We mainly focus on the GPU case in this report. This test is also known as the MPI Ping-Pong

1We used modules spectrum-mpi/10.3.1.2-20200121, cuda/10.1.243 and gcc/6.4.0. There was an environment variable
PAMI CUDA AWARE THRESH with default 320000. Spectrum MPI used a so-called staging approach for messages larger than it, and
used GPUDirect otherwise. We found staging generally gave worse results in MPI latency tests, especially in inter-node tests
with large messages. So for tests in this report, we unset this environment variable, in other words, we always used GPUDirect.
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Figure 2: OSU Microbenchmarks latency test [9]
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Figure 3: MPI rank placements in the OSU latency test. Unused CPUs/GPUs in each diagram are omitted.

test. Shown in Figure 2, it uses two MPI ranks and allocates a send buffer (sbuf) and a receive buffer (rbuf)
on each rank. Rank 0 MPI Send()s a message of a certain size from its sbuf to rank 1’s rbuf. Once rank
1 MPI Recv()s the message, rank 1 replies with a message of the same size from its sbuf to rank 0’s rbuf.
When rank 0 gets the reply, this finishes a round trip from rank 0 to rank 1. The round trip is repeated
many times (10,000 times for messages ≤ 8 kilobytes and 1,000 times otherwise). The latency is calculated
as the average time of a one-way trip. The send and receive buffers are distinct in order to minimize the
cache effect, although that is not very important on GPUs, as we will see later. The microbenchmark uses
MPI Wtime() for timing and assumes that the send buffers are ready for MPI, so no CUDA synchronizations
are involved.

We placed the two MPI ranks on the same GPU, on two GPUs attached to the same CPU, on two GPUs
attached to different CPUs within a node, and on two GPUs across nodes. These rank placements are referred
to as intra-GPU, intra-socket, inter-socket, and inter-node, respectively, in this report, as shown in Figure 3.
First we enabled Spectrum MPI’s CUDA support with jsrun --smpiargs ‘‘-gpu’’ and measured device
to device Ping-Pong latency with “osu latency D D”. Then we modified osu latency.c and allocated two
pinned (page-locked) buffers on host with cudaMallocHost() as intermediate send/receive buffers. To send
data, we first copied data from GPU to the send buffer on CPU with cudaMemcpy(); after receiving the data
in the receive buffer on CPU, we copied it to GPU with cudaMemcpy() again. This mimics a code without
CUDA-aware MPI support. We measured the modified osu latency again with the same jsrun command
line. The results are shown in Table 1. Although the microbenchmark can test message sizes starting from 0,
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for brevity we omitted results for messages smaller than 8 bytes. The intra-GPU results with CUDA-aware
MPI are better than those reported in Figure 6 of [7]. The remaining results largely match with those in
Figures 4, 10, and 12 of [7]. We can regard these performance numbers as an upper bound that a similar
PETSc benchmark could achieve. We can see the one with CUDA-aware MPI was always better than the
one without.

Table 1: MPI Ping-Pong latency2 measured by osu latency from the OSU Microbenchmarks [9].
Message size
(bytes)

Latency (µs) with CUDA-aware MPI Latency (µs) without CUDA-aware MPI
Intra-GPU Intra-socket Inter-socket Inter-node Intra-GPU Intra-socket Inter-socket Inter-node

8 20.1 17.8 19.3 6.0 28.73 27.68 28.78 28.76
16 20.1 17.8 19.4 6.0 28.71 27.71 28.75 28.75
32 20.1 17.8 19.4 6.8 28.75 27.74 28.76 29.42
64 20.1 17.8 19.5 6.0 28.79 27.79 28.87 28.82

128 20.1 17.8 19.5 6.1 28.79 27.81 28.88 29.60
256 20.1 17.8 19.4 6.2 28.93 27.96 29.18 29.54
512 20.1 17.8 19.5 6.2 29.05 28.13 29.39 30.20
1K 20.1 17.8 19.4 6.3 29.26 28.40 29.63 30.18
2K 20.0 17.8 19.4 6.8 29.61 28.89 30.03 31.45
4K 20.1 17.8 19.4 7.2 30.65 29.63 31.51 32.37
8K 20.1 17.8 19.5 8.2 31.31 30.51 32.41 35.24

16K 20.1 17.8 19.5 9.3 34.54 33.84 35.67 38.28
32K 20.0 17.8 19.4 11.4 33.17 31.51 34.65 37.94
64K 20.1 18.5 20.1 14.1 35.72 34.37 38.99 43.81

128K 20.1 20.0 21.6 19.9 41.81 40.03 47.24 50.62
256K 20.1 22.6 24.6 30.5 53.32 50.95 63.07 67.03
512K 20.4 28.2 30.9 51.8 74.10 72.28 94.70 100.05
1M 20.7 39.4 43.2 98.2 115.54 114.08 156.93 169.05
2M 25.6 61.7 68.2 191.2 199.58 196.53 280.78 305.03
4M 31.6 106.6 140.9 436.7 389.26 370.69 532.59 583.37

For a message of s bytes, its MPI Ping-Pong latency l can be modeled as

l = α+ βs, (1)

where α is the start-up time and β is reciprocal of the MPI Send/Recv() bandwidth. The term latency has
two usages in communication; it is used as the total time of communication, but in some literature it also is
used as the start-up time α. We follow the former usage and hope it will not be confusing in the document.
We fit the data in Table 1 with the least squares algorithm and obtained the start-up time and bandwidth
for various rank placements, shown in Figure 4.

From the computed results, the intra-GPU bandwidth reaches 83.4% of half of the GPU peak memory
bandwidth of 900 GB/s (note that we both read and write the same GPU memory in this case). The
intra-socket and inter-socket bandwidths reach 94.6% and 71.8% of the NVLink bandwidth at 50 GB/s,
respectively, while the inter-node one reaches only 40.4% of the EDR IB bandwidth at 25 GB/s. Since GPU
virtualization on Summit comes with some cost, up to 20%, we highly recommend using one MPI rank per
physical GPU. In the subsequent studies in this report, we follow this approach.

4 The Communication Module in PETSc

4.1 Introduction

PetscSF is PETSc’s communication module. It is heavily used by other PETSc modules internally. Ap-
plications can also call it directly. VecScatter, a public interface for communication on PETSc vectors, is
implemented by utilizing PetscSF. PetscSF abstracts communications into a star-forest graph. A star-forest

2We note that we observed considerable variations across runs (jobs) in the inter-node big messages tests (e.g., 4 MB), which
could be 20% higher than what is reported here. We think this is due to the location of the two nodes in the communication
network allocated by the job submission system. Two-node results in this report were got from nodes with names like d36n09

and d36n10. Telling from names, we believe they were physically very close.
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Figure 5: Star-forest example

is a forest containing multiple star-shaped trees, where each tree has a height of one, with one root and
multiple leaves. See Figure 5 for example.

To build a PetscSF, users need to provide on each MPI process two integer-indexed spaces: the leaf space
and the root space. Leaves in the leaf space can be dense (i.e., contiguous) or sparse and must be local to
the process such that an integer can identify a leaf. Roots must be dense. Roots might be remote; in that
case one uses rank, index) pairs to specify roots that the local leaves connect to, where rank is the MPI
rank a root resides in and index is the local index of the root on that MPI rank.

PetscSF provides split-phase routines to communicate between roots and leaves of a star-forest. For
example, PetscSFReduceBegin/End() reduces leaves to their connected roots with a given MPI reduction
operation. PetscSFBcastBegin/End() broadcasts roots to their connected leaves. Users are able to put
computation between PetscSFXxxBegin/End() so that communication and computation can be overlapped.
In addition, one can interleave communications on the same PetscSF with different leaf data or root data.

4.2 PetscSF Implementation

A naive implementation of a star-forest would post sends and receives for every edge in the star-forest. This
is inefficient, so PetscSF has a setup phase, which performs an index analysis to agglomerate messages and
also to provide hints for other optimizations. The index analysis cost is low and can be amortized by repeated
calls to the PetscSF communication routines.
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On each MPI process, PetscSF internally computes the process’s neighbors (a list of destination ranks
and source ranks) with which the process will communicate, in other words, send data to or receive data
from. For each destination, the process computes the indices of the local data (leaves or roots depending
on the context) it needs to send. For each source, it computes the indices that indicate the locations where
it should deposit the received data. When a neighbor is the process itself, we call the communication local
communication; otherwise we call it remote communication. We separate local and remote communications
since for the local communication we can bypass MPI and enjoy unique optimization opportunities.

For remote communication, PetscSF allocates on each MPI process a send buffer and a receive buffer.
Consider the example PetscSFReduceBegin(sf,unit,leafdata,rootdata,op). A process packs selected
entries of leafdata into the send buffer and then sends them. After a process receives data in the receive
buffer it unpacks entries from the buffer and deposits them to rootdata. Each remote neighbor has its own
region in the send and receive buffers. PetscSF’s pack/unpack routines are overloaded according to the
location of the root/leafdata. When data is in the CPU memory, the routines are CPU functions; when data
is in GPU memory, the routines are CUDA kernels, where each CUDA thread works on a leaf/root. PetscSF
uses atomic instructions in the unpack CUDA kernels when there are chances of data race conditions.

PetscSF may use index analysis results to exploit optimizations in order to decrease the packing cost. For
instance, in PetscSFReduce(), when the leaf indices used in packing are contiguous, PetscSF aliases leafdata
as the send buffer and completely avoids the packing. An obvious question is whether in PetscSFReduce(),
when the root indices for unpacking are contiguous, it can alias rootdata as the receive buffer and avoid
the unpacking. The answer depends on the reduction operation argument op. If op is MPI REPLACE, it
can; otherwise, it cannot and has to allocate a receive buffer and launch an unpack kernel to perform the
reduction. Even in this case, it has an optimization when the root indices are contiguous. It can skip copying
the unneeded indices to the GPU and use a simpler expression in the unpack kernel. PetscSF employs
persistent MPI Isend/Irecv() routines for communication. With this and buffer aliasing, this means that
in an SF’s lifetime it may encounter different send/receive buffers. PetscSF handles this complexity with
MPI persistent requests. PetscSF does buffer allocation and MPI persistent request initialization on demand
and thus uses the resources only when needed.

PetscSF treats local communication as a scatter operation: x[idx[i]] → y[idy[i]], for i ∈ [0, n).
The scatter is a GPU kernel when the data is on the GPU. It uses simpler expressions such as x[startx+i]
→ y[idy[i]] when it knows the indices. Other variants exist, such as when the scatter is a memory copy,
or even a no-op when it determines it is a memory copy with the same destination as the source. PetscSF

exploits these opportunities to optimize local communication.
In PetscSFXxxBegin(), it first checks memory types of the input rootdata and leafdata, to determine

whether they point to CPU or GPU memory. It needs this information to set up the needed data structures
and select the appropriate pack routines. Then it posts MPI Irecv() requests through MPI Startall(),
calls a pack routine to pack source data into the send buffer, and posts MPI Isend requests. After that,
it calls a scatter routine to do local communication. In PetscSFXxxEnd(), it waits for the requests it has
posted with MPI Waitall(). It then calls an unpack routine to unpack the data from the receive buffer. The
pack/unpack is skipped sometimes, as discussed above.

Although PetscSF has a “copy to CPU memory” fallback mode for systems without GPU-aware MPI, we
focus exclusively on the code path using GPU-aware MPI since it avoids the back-and-forth buffer copying
between CPUs and GPUs and has superior performance.

CUDA kernels are executed asynchronously with respect to the CPUs. CUDA provides functions such
as cudaDeviceSynchronize() and cudaStreamSynchronize() for users to synchronize the whole device
or just a CUDA stream. They are blocking calls on CPU threads. The CUDA driver reserves a region of
pinned (i.e., pages-locked) host memory as a shared sync location between the CPU and the GPU, where
it can store GPU progress values. Every major GPU operation is followed by a command to write the new
progress value to the shared sync location through direct memory access. By checking the progress value,
these functions can know whether the previously issued GPU operations are completed [12].

When a PetscSF routine is called, the leaf/root data might still be in the process of being computed by
a CUDA kernel on a CUDA stream that is not known to the PetscSF. Therefore, for correctness, PetscSF
must call cudaDeviceSynchronize() to wait for the data to be ready. PetscSF could launch pack/unpack

kernels on its own stream. On the sender side, PetscSF calls cudaStreamSynchronize() on the stream
before MPI Isend(). On the receiver side, after MPI Waitall(), PetscSF is assured that the data has been
received so it launches the unpack kernel immediately and then calls cudaStreamSynchronize() to make
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Figure 6: Different synchronization models in PetscSF

the data ready for the PetscSF clients (either applications or other modules of PETSc). This procedure is
demonstrated in Figure 6(a) using PetscSFReduce() as an example. Many synchronizations are involved. If
PetscSF knew the streams where the leaf/rootdata was produced or is to be consumed, it could eliminate the
synchronizations before pack and after unpack, as shown in Figure 6(b). Furthermore, if the MPI routines
were CUDA-stream aware, for example, by taking a stream argument or other means, and worked like a
kernel launch, we then could remove the synchronization before MPI Isend(), as shown in Figure 6(c). Doing
so, however, requires support from MPI that is currently not available; see the MPI and CUDA semantic
mismatch discussion in [5].

Model (a) is the most general model. Since PETSc currently uses only the CUDA default stream, we
provide an option -sf use default stream to allow PetscSF to skip the cudaDeviceSynchronize() call
before the pack and the cudaStreamSynchronize() call after the unpack. This option turns Model (a) into
Model (b) in Figure 6 (with s1 = s2 = NULL). For the performance experiments, we also provide an option
-sf use stream aware mpi that pretends that the underlying MPI knows the streams where the send/receive
data is being produced/consumed and eliminates the cudaStreamSynchronize() after the pack and turns
Model (b) into Model (c).

5 Experimental Results

5.1 PetscSF without pack/unpack

We begin with a Ping-Pong test that uses PetscSF but otherwise has the same parameters as those in the
OSU microbenchmark Ping-Pong test used in Section 3. Suppose we want to measure latency for a message
of 8n bytes. We build a PetscSF in which rank 0 has n roots and zero leaves, while rank 1 has 0 roots and n
leaves, as shown in Figure 7. Rank 1’s leaves are one-on-one sequentially connected to rank 0’s roots. With
this PetscSF, PetscSFBcast() will send from rank 0 to rank 1, while PetscSFReduce() will send from rank
1 to rank 0. We used double precision and MPI DOUBLE as the MPI datatype for roots and leaves. For the
study, we built different PetscSFs for the different message sizes. The following loop shows a Ping-Pong test
for a given message size. Note that sbuf and rbuf in the code work as a pair of rootdata on rank 0, and as
a pair of leafdata on rank 1, which is intended to mimic the behavior in the OSU microbenchmark.

Since in this test the root/leaf indices are contiguous and we do not perform reductions on the roots,
PetscSF has optimizations that directly use sbuf or rbuf as MPI’s send/receive buffers and avoid the
packing/unpacking kernels. In other words, we get the simplified code path depicted in Figure 8(a). To
remove the cudaDeviceSynchronize() before the MPI Isend, we use option -sf use default stream to
indicate that the root/leaf data is available on the default stream, and we obtain the code path shown
in Figure 8(b). The cudaStreamSynchronize(NULL) is there because the condition that leaf data is on
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Figure 7: Star-forests in the PetscSF Ping-Pong and unpack tests (left) and in the PetscSF scatter test
(right)

for (i=0; i<niter; i++) {

PetscSFBcastBegin(sf,MPI_DOUBLE ,sbuf ,rbuf);

PetscSFBcastEnd(sf,MPI_DOUBLE ,sbuf ,rbuf);

PetscSFReduceBegin(sf,MPI_DOUBLE ,sbuf ,rbuf ,MPI_REPLACE);

PetscSFReduceEnd(sf,MPI_DOUBLE ,sbuf ,rbuf ,MPI_REPLACE);

}

Listing 1: sf pingpong benchmark loop

the default stream does not necessarily mean it is ready for MPI to send. To remove it, we use option
-sf use stream aware mpi to indicate that MPI knows which streams to use for the input or output data.
Although the IBM Spectrum MPI does not support this feature, it does not matter in this simple test since
the input data is always ready and the test does not use the output data. This produces the code path in
Figure 8(c).

We measured the intra-socket GPU to GPU latency for the three variants. The results are shown in
columns Opt-A/B/C, respectively. Comparing intra-socket columns Opt-A and Opt-B, we can see that
cudaDeviceSynchronize() has a slightly higher cost (about 1.5µs) than does cudaStreamSynchronize().
Comparing intra-socket columns Opt-B and Opt-C, we know the time of a cudaStreamSynchronize()

call is about 4µs, since Opt-C does not have any synchronization. We profiled the code with Opt-C and
found the time-consuming CUDA driver routine cuPointerGetAttribute(), which was called twice in
PetscSFXxxBegin() to test the pointer attributes (if they point to CPU or GPU memory) of the argument’s
rootdata and leafdata. Since we knew in this test they were GPU pointers, we manually modified the
PetscSF code and bypassed the CUDA driver call. The results are in column Opt-D. Comparing it with the
intra-socket column in Table 1, we can see that the minimal overhead of PetcSF is around 1µs over pure MPI,
which is satisfying. Overall the PetscSF Ping-Pong latency is about 6µs longer than that of pure MPI. For
completeness, Table 2 also shows inter-socket and inter-node latency with Opt-B, which is PETSc’s default
model; we will use it for the remaining tests in this report. We also modeled PetscSF Ping-Pong latency
with Opt-B using the linear model Eq. 1 in Section 3, shown in Figure 9. Compared with data in Figure
4, PetcSF Ping-Pong had a longer start-up time but the same bandwidth. Comparing the most general
synchronization model in Figure 6(a) with PETSc’s default model in Figure 6(b), we see that the former
has one cudaDeviceSynchronize() and one cudaStreamSynchronize(), whose cost is about 9µs in total,
based on the above analysis.
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Rank 1
(sbuf can be computed on

any stream)

cudaDeviceSynchronize()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Rank 1
(sbuf is being computed on

stream 0)

Rank 0
(rbuf is being consumed on

stream 0)

Rank 0
(rbuf can be computed on

any stream)

Rank 1
(sbuf is being computed on

stream 0)

Rank 0
(rbuf is being computed on

stream 0)

(a) Synchronization model with Opt-A (b) Synchronization model with Opt-B (c) Synchronization model with Opt-C

PetscSFReduceBegin/End(sf,MPI_DOUBLE,sbuf,rbuf,MPI_REPLACE)

cudaStreamSynchronize()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

MPI_Isend(sbuf,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Figure 8: Code paths in the sf pingpong test with different synchronization models
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Inter-socket: l = 24.3µs + s÷35.8GB/sec.
Inter-node: l = 10.8µs + s÷10.1GB/sec.

1

Figure 9: PetscSF Ping-Pong latency modeled by l = α+βs for various rank placements using data in Opt-B
columns of Table 2. The curves are fit by the linear least squares method.

Table 2: sf pingpong latency. Options used: Opt-A = -use gpu aware mpi; Opt-B = Opt-A +
-sf use default stream; Opt-C = Opt-B + -sf use stream aware mpi; Opt-D = Opt-C + manually
set types of root/leafdata as GPU memory pointers. PETSc’s default is Opt-B.

Message
size (bytes)

Intra-socket latency (µs) Latency (µs) with Opt-B
Opt-A Opt-B Opt-C Opt-D Inter-socket Inter-node

8 25.3 23.8 19.9 19.0 25.4 12.0
16 25.2 23.7 19.7 19.0 25.4 11.6
32 25.2 23.6 19.7 18.9 25.3 11.6
64 25.2 23.7 19.7 19.0 25.3 11.6

128 25.2 23.6 19.8 19.0 25.3 11.9
256 25.2 23.6 19.8 19.0 25.4 11.8
512 25.2 23.6 19.8 19.0 25.3 11.8
1K 25.2 23.5 19.8 19.0 25.3 11.9
2K 25.2 23.6 19.8 19.0 25.3 12.5
4K 25.1 23.6 19.8 19.0 25.3 12.9
8K 25.0 23.5 19.6 18.9 25.3 13.9

16K 25.3 23.5 19.8 18.9 25.3 15.1
32K 25.3 23.5 19.8 19.0 25.4 17.2
64K 25.7 24.3 20.5 19.7 25.9 19.8

128K 27.3 25.5 21.7 20.9 27.5 25.7
256K 30.0 28.3 24.5 23.6 30.5 36.2
512K 35.5 34.0 30.1 29.3 36.8 58.8

1M 46.8 45.1 41.3 40.5 49.2 104.3
2M 68.9 67.3 63.6 62.8 74.3 197.0
4M 113.9 112.5 108.6 107.9 147.2 441.2
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for (i=0; i<niter; i++) {

PetscSFBcastAndOpBegin(sf,MPI_DOUBLE ,rootdata ,leafdata ,MPI_SUM);

PetscSFBcastAndOpEnd(sf ,MPI_DOUBLE ,rootdata ,leafdata ,MPI_SUM);

PetscSFReduceBegin(sf,MPI_DOUBLE ,leafdata ,rootdata ,MPI_SUM);

PetscSFReduceEnd(sf,MPI_DOUBLE ,leafdata ,rootdata ,MPI_SUM);

}

Listing 2: sf unpack benchmark loop

rank 1
(leafdata is produced on

stream 0)

rank 0
(rootdata is consumed on

stream 0)

cudaStreamSynchronize()

MPI_Isend(leafdata,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...>>>
(rootdata,...,rbuf)

Scatter<<<...>>>
(leafdata,rootdata,...)

rank 1
(leafdata is produced on

stream 0)

rank 0
(rootdata is consumed on

stream 0)

PetscSFReduceBegin/End(sf,MPI_DOUBLE,leafdata,rootdata,MPI_SUM)

cudaStreamSynchronize()

MPI_Isend(leafdata,...) MPI_Irecv(rbuf,...)

MPI_Waitall()

Unpack<<<...>>>
(rootdata,...,rbuf)

Figure 10: Code paths of PetscSFReduce() in tests sf unpack (left) and sf scatter (right)

5.2 PetscSF with unpack and local communication

We now turn to the unpack kernels and local communications. We slightly modified the sf pingpong test
and created a new test called sf unpack. In sf unpack we used only one set of root data on rank 0 and one
set of leaf data on rank 1. We added roots to leaves with PetscSFBcastAndOp() and leaves to roots with
PetscSFReduce() using the code in Listing 2. Because of the use of MPI SUM, we need a receive buffer at
the destination and an unpack kernel to perform the addition. With PETSc’s default option, we have the
code path shown in Figure 10. Comparing it with Figure 8(b), we see that we pay an extra cost for calling
unpack, which includes the kernel launch time and kernel execution time.

To see the local communication behavior, we created another test called sf scatter by merely changing
the PetscSFs used in the sf unpack test. We added leaves on rank 0 and made them connected to its
roots one-on-one. An example PetscSF is shown on the left of Figure 10. With the new PetscSFs and the
same code in Listing 2, PetscSFBcastAndOp() will add roots on rank 0 to both local and remote leaves; and
PetscSFReduce() will add both the local and remote leaves to the roots. The code path for PetscSFReduce()
is shown in the right of Figure 10. On rank 0, the local communication is done through the scatter kernel,
which directly works on rootdata and leafdata. The remote communication is done through the unpack

kernel, which works on rootdata and the receive buffer rbuf. The two kernels are executed in the default
stream one after another, so we are not concerned with the data-race condition in the reduction. Also note
that scatter is called between MPI Irecv() and MPI Waitall(), so that local communication is overlapped
with remote communication.

For a fair comparison, we modified sf pingpong to let it use one set of root/leaf data (the code is equal to
replacing MPI SUM in Listing 2 with MPI REPLACE) and called it sf newpingpong. We tested sf newpingpong,
sf unpack, and sf scatter, and we present their latency lpingpong, lunpack, and lscatter in columns of Table
3. Let us denote a kernel K’s launch and execution time as Tl(K) and Te(K), respectively. We make th4e
following observations.

1. The results of sf pingpoing in Table 2 (columns labeled with Opt-B) and the results of sf newpingpong
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in Table 3 are close except for the inter-socket and inter-node tests with large messages. For example,
in the inter-node 4 MB message size tests, sf newpingpong is about 13% faster than is sf pingpoing.
This implies that caching does play a role in these cases. Further investigation is out of the scope of
this report.

2. In these tests the roots and leaves are dense so that the unpack and scatter kernels are a vector
addition. Using the GPU memory bandwidth 900 GB/s given in Figure 1, we can get a rough estimation
of the kernel’s unpack and scatter’s maximal execution time at 4 MB messages size, Te(unpack) =
Te(scatter) = 4 MB*2/900 GB/s = 9.3µs, including both the read and write times.

3. According to the code path of sf unpack in the left of Figure 10, its latency can be expressed as

lunpack = lpingpong + Tl(unpack) + Te(unpack). (2)

Looking at the first row of Table 3 at the message size of 8 bytes (i.e., one double), if we deem
Te(unpack) = 0, then we can easily get kernel launch time Tl(unpack) = lunpack − lpingpong = 12µs,
which generally can also be used as the launch time of other kernels.

4. According to the code path of sf scatter in the right of Figure 10, its latency can be expressed as

lscatter = max
(
lpingpong, Tl(Scatter) + Te(Scatter)

)
⊕ Tl(unpack) + Te(unpack). (3)

The ⊕ indicates that if MPI finishes earlier than the scatter kernel, launch of unpack can overlap with
execution of scatter. In our tests, however, one can check that lpingpong ≥ Tl(scatter)+Te(scatter) for
almost all cases, such that sf scatter’s latency lscatter = lpingpong +Tl(unpack) +Te(unpack) = lunpack.
We can observe that it holds for messages from 8 B to 2 MB. Data for the message size 4 MB is
an outlier. We guess that the reason is that the local communication (i.e., the scatter kernel) and
the remote communication interfere on the memory system, which makes lscatter longer than lunpack.
Figure 11 shows the timeline of sf scatter on rank 0 with message size 4 MB using the NVIDIA
profiling tool nvprof. We can clearly see that the execution of the scatter kernel is overlapped with
MPI communication.

Table 3: One-way latency for the three tests: sf newpingpong, sf unpack and sf scatter
Message
size (bytes)

Intra-socket(µs) Inter-socket(µs) Inter-node(µs)
new Ping-Pong unpack scatter new Ping-Pong unpack scatter new Ping-Pong unpack scatter

8 24.3 35.9 35.8 25.4 37.6 37.8 12.2 22.9 23.0
16 24.2 35.7 35.6 25.5 37.5 37.6 11.5 22.6 22.6
32 24.1 35.8 35.8 25.4 37.5 37.8 11.6 22.6 22.8
64 24.2 35.8 35.8 25.4 37.6 37.8 11.6 22.6 22.6

128 24.1 35.7 35.6 25.4 37.5 37.6 11.7 22.8 22.6
256 24.2 35.8 35.8 25.5 37.6 37.8 11.7 22.7 22.7
512 24.2 35.7 35.8 25.4 37.6 37.9 11.8 22.8 23.2
1K 24.2 35.7 35.6 25.4 37.6 37.7 11.9 23.0 22.9
2K 24.2 35.6 35.8 25.4 37.6 37.8 12.5 23.3 23.5
4K 24.1 35.7 35.8 25.4 37.6 37.7 12.9 24.0 23.9
8K 24.0 35.7 35.6 25.6 37.6 37.6 13.8 24.7 25.0

16K 24.0 35.7 35.8 25.6 37.6 37.8 15.0 25.9 25.9
32K 24.1 35.7 35.7 25.7 37.6 37.5 17.2 28.1 28.1
64K 24.7 36.3 36.2 26.3 37.9 38.1 19.8 31.1 31.1

128K 25.9 37.4 37.4 27.7 39.5 39.7 25.5 36.8 36.9
256K 28.5 40.3 40.4 30.7 42.7 42.9 36.2 47.5 47.5
512K 34.2 46.7 46.7 36.9 49.8 49.7 57.5 69.6 69.3

1M 45.3 58.0 58.1 49.3 62.4 62.5 106.5 115.9 115.9
2M 67.6 81.2 81.2 74.0 88.0 88.0 197.5 210.7 210.9
4M 112.2 138.8 140.5 123.5 153.4 160.8 382.7 415.7 427.1

4The actual kernel names are d ScatterAndXxx and d UnpackAndXxx, as shown by nvprof. For brevity, we just call them
scatter or unpack in this report.
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* Start of PetscSFBcastAndOpBegin()
* Launch Scatter<<<...>>>

* Execute Scatter<<<...>>>
* Overlap with MPI

* Start of PetscSFReduceBegin()
* Launch Scatter<<<...>>>

* Execute Scatter<<<...>>>
* Overlap with MPI

* End of PetscSFReduceEnd()
* Launch Unpack<<<...>>>

*Execute Unpack<<<...>>>

Figure 11: Timeline of one iteration of sf scatter on rank 0 with 4 MB messages. Local communication (i.e.,
the scatter kernel4) is fully hidden by remote communication (i.e., MPI Waitall()).

5.3 PetscSF in regular neighborhood communication

In this section we evaluate PetscSF with a five-point stencil code featuring regular neighborhood commu-
nication. We construct a two-dimensional grid with DMDACreate2d() and then do communication between
global vectors and local vectors created with this DM. The code creating the DM and the vectors is

DMDACreate2d(comm ,DM_BOUNDARY_PERIODIC ,DM_BOUNDARY_PERIODIC ,DMDA_STENCIL_STAR ,3*n,3*n

,3,3,1,1,0,0,&da);

DMCreateGlobalVector(da ,&g);

DMCreateLocalVector(da ,&l).

Here, we create a 3×3 processor grid; we set the stencil type to DMDA STENCIL STAR, the stencil width to 1,
and the boundary type to DM BOUNDARY PERIODIC; and we let every process have a square subgrid of size
n× n. The DM is shown on the left of Figure 12. With this setup, each MPI rank will have four neighbors;
each will communicate the same amount of data.

In PETSc, global vectors on this grid have a local size of n2, and elements of the vectors are consec-
utively stored on each process. The local vectors have a size of (n + 2)2, including a ghost (halo) region.
DMGlobalToLocal(), which is implemented by using PetscSFBcast(), copies the local part of a global vec-
tor to the interior part of a local vector on each rank and also copies the ghost point values received from
neighbors to the halo region of the local vector, shown in the right of Figure 12. Copying the interior region
is the local communication, and send/receiving the ghost point values is the remote communication. Each
process has to pack four faces of its subgrid into a send buffer and then to its four neighbors and then
unpack the ghost point values from its receive buffer. To copy local vectors to global vectors, one uses
DMLocalToGlobal(), which simply reverses the process above and is implemented by PetscSFReduce().

We can easily see that the local indices of global vectors are contiguously running from 0 to n2 − 1.
However, the indices of the ghost points as a whole, or the indices of points in the interior region of a local
vector, are not contiguous. Since no hints are given to PetscSF that these indices are incidental to a regular
2D grid, a naive implementation would copy the indices to the GPU and resort to in-directions such as
buf[i] = x[idx[i]] to do the copying. Instead, our optimized PetscSF uses index analysis to determine
whether the indices associated with a destination rank can be arranged in a 3D subgrid. Suppose we have a
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rank 4 rank 4

rank 0 rank 1

DMGlobalToLocal()

n

n
n+2

n+2

DMLocalToGlobal()
x

y

index = n+3

x

y

Figure 12: DM created by DMDACreate2d() on nine processors (left) and a local vector on rank 4 (right).
Grid points on each processor are numbered in x, y order. Shadowed areas are ghost points.

for (i=0; i<niter; i++) {

DMGlobalToLocalBegin(da ,g,INSERT_VALUES ,l);

DMGlobalToLocalEnd(da,g,INSERT_VALUES ,l);

DMLocalToGlobalBegin(da ,l,ADD_VALUES ,g);

DMLocalToGlobalEnd(da,l,ADD_VALUES ,g);

}

Listing 3: sf dmda benchmark loop

3D grid of size [X,Y,Z] with nodes sequentially numbered in the x, y, z order. Suppose that within it is a
subgrid of size [dx,dy,dz] with an index of the first node being start. The indices of the subgrid can be
enumerated with start+X*Y*k+X*j+i, for (i,j,k) in (0≤i<dx,0≤j<dy,0≤k<dz). Using this, the interior
region of a local vector on this DM can be described as a subgrid of size [n,n,1] in a grid of size [n+2,n+2,1]
with a start index n+3. Each face of the halo region can be described similarly. With this optimization, we
need only to copy these grid parameters to the GPU; we then can easily calculate the needed indices there.

Since indices of ghost points are not contiguous, PetscSF has to allocate separate send and receive buffers
and call the pack and unpack kernels, producing a code path similar to that in Figure 6(b) except that in
the current case a scatter kernel is launched after MPI Irecv() to do local communication. We perform
back-and-forth communication between a global vector and a local vector using the code in Listing 3.

Note that in DMLocalToGlobal() we use ADD VALUES instead of INSERT VALUES since points along subgrid
boundaries are reduced with ghost point values received from their neighbors. Consequently PetscSF has
to handle potential data race conditions in the unpack kernel. We tested the code on Summit with two
configurations. The first had nine compute nodes and one MPI rank per node. Since there was only inter-
node communication, ideally all ranks should run uniformly with the same amount of communication and
time. The other configuration had three compute nodes with three MPI ranks per node. MPI ranks were
distributed in a packed manner such that ranks 0, 1, and 2 were on node 0; ranks 3, 4, and 5 were on
node 1; and so forth. We placed each group of three ranks on one socket of a node. From Figure 12, we
know that every rank did intra-socket communication with its eastern/western neighbors and did inter-node
communication with its southern/northern neighbors. However, all ranks had even work and communication.
Similar to the Ping-Pong test, we measured the average one-way latency of the communication, which is
shown in Table 4.
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* Start of DMGlobalToLocalBegin()
* Launch Pack<<<...>>>

Execute

* Start of local communication
* Launch Scatter<<<...>>>* cudaStreamSynchronize()

Execute Scatter;
Overlap with MPI

* Launch Unpack<<<...>>>

Execute

* Start of DMLocalToGlobalBegin()
* Launch Pack<<<...>>>

Execute

* End of DMLocalToGlobalEnd()

Execute
Execute;
Overlap with MPI

Figure 13: Timeline of one iteration of sf dmda on rank 0 with nine nodes and n = 128

Table 4: One-way latency for the sf dmda test, where n is the subgrid size and message size = 8n, which is
the size of messages between two neighbors.

n
Message
size (bytes)

Latency(µs)
Nine nodes Three nodes

4 32 45.6 75.7
8 64 44.8 75.6

16 128 45.5 75.7
32 256 45.5 75.8
64 512 45.0 75.8

128 1K 46.0 75.9
256 2K 46.3 75.9
512 4K 47.1 76.0

1024 8K 57.1 83.0
2048 16K 139.9 139.0
4096 32K 499.9 498.3

We can see from the table that for small messages (n ≤ 512) the latency is almost the same, which
indicates that the MPI latency and CUDA run-time overhead dominates. Since the intra-socket Ping-Pong
latency is longer than the inter-node one, the three-node configuration has a longer latency than the nine-
node configuration has. Figure 13 shows profiling results of rank 0 with the nine-node configuration. We can
see that MPI communication time is longer than the scatter kernel execution time and that the pack and
unpack kernel launch times are prominent. In contrast, with larger n, the scatter kernel execution time,
which is proportional to n2, outweighs all times so that three nodes have the same execution time as nine
nodes have. We can easily see this from the profiling result with n = 4096 in Figure 14.

5.4 PetscSF in irregular neighborhood communication

We now turn our attention to irregular communications. To study this problem, we use PETSc’s sparse
matrix-vector multiplication routine MatMult(M,x,y), which calculates y = Mx. In PETSc, the sparse
matrix is distributed by row, and the vectors x and y are also distributed accordingly. On each process,
the local matrix is split into a diagonal submatrix A and an off-diagonal submatrix B. The multiplication
with the diagonal part, Ax, needs to access only local entries of x and does not need communication, while
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* Start of local communication
* Launch Scatter<<<...>>>

Execute Scatter;
Overlap with MPI

Figure 14: Timeline of one iteration of sf dmda on rank 0 with n=4096

for (i=0; i<niter; i++) {

VecScatterBegin(Mvctx ,x,lvec ,INSERT_VALUES ,SCATTER_FORWARD);

MatMult(A,x,y); /* overlapped computation : y = Ax */

VecScatterEnd(Mvctx ,x,lvec ,INSERT_VALUES ,SCATTER_FORWARD);

MatMultAdd(B,lvec ,y,y); /* y += B lvec */

}

Listing 4: MatMult benchmark loop

the multiplication with the off-diagonal part, Bx, needs to access remote entries of x and hence requires
communication. The communication is done by VecScatter, which is implemented in PetscSFBcast(). In
the matrix-vector product implementation, PETSc allocates a local vector lx working as star-forest leaves
on each process to store remote entries of x. Without going into too many details, we have: the following.
(1) The leaves are contiguous such that the PetscSF can directly use the leafdata (i.e., data array of lvec)
as the leaf buffer in PetscSFBcast(), without resorting to an unpack kernel. (2) Since the matrix is sparse,
each rank only needs to send out some entries of vector x (i.e., the roots). Therefore the roots are not
contiguous, and we need a pack kernel. (3) There is no local communication. (4) The local computation,
namely, Ax, could be overlapped with the communication. With that, we have the classical MatMult(M,x,y)
implementation in PETSc, shown as the loop body in Listing 4 and in Figure 15(a).

From Figure 15(a), we see that the cudaStreamSynchronize() in VecScatterBegin() is only to ensure
that sbuf, the output of the unpack kernel, is ready for use in MPI Isend(). However, it accidentally blocks
the launch of y = Ax, which is done through a cuSPARSE kernel. In other words, the launch cost of
y = Ax cannot be hidden. A remedy is to use CUDA events and rearrange VecScatterBegin/End(), as
shown in Figure 15(b). There we record a CUDA event right after the pack and move MPI Isend() from
VecScatterBegin() to VecScatterEnd(). The event is synchronized before MPI Isend() so that MPI does
not send out incorrect data. Note that the Blvec in Figure 15(b) depends only on the communication results
and does not depend on y = Ax. However, the algorithm requires y = y + Blvec to be executed after
y = Ax. We can decouple this dependency with the help of a temporary vector z. In Figure 15(c), we launch
z = Blvec on a new stream s and then launch kernel y = y+z on the default stream to add the partial result
to y. We use CUDA events to build the dependency between the two kernels on different streams. As long
as the communication finishes before kernel y = Ax, kernel z = Blvec has the potential to run concurrently
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MPI_Irecv(lvec,...)

Pack<<<...>>>(...,sbuf)

cudaStreamSynchronize(NULL)

MPI_Isend(sbuf,...)

y = Ax

y += B*lvec

VecScatterEnd:

MPI_Irecv(lvec,...)

y = Ax

cudaEventSynchronize(e)

MPI_Waitall()

MPI_Isend(sbuf,...)

y += B*lvec

Pack<<<...>>>(...,sbuf)
cudaEventRecord(e,NULL)

MPI_Irecv(lvec,...)

y = Ax

y += z 

Pack<<<...>>>(...,sbuf)
cudaEventRecord(e,NULL)

cudaEventSynchronize(e)

MPI_Isend(sbuf,...)

MPI_Waitall()

cudaStreamWaitEvent(NULL,f)

z = B*lvec on stream s
cudaEventRecord(f,s)

MPI_Waitall()

VecScatterBegin:

(a) Classical MatMult (b) MatMult with early launch of y=Ax  (c) MatMult with concurrent Ax, B*lvec 

Figure 15: Various matrix-vector product implementations. Boxes at the top are the VecScatterBegin(),
and those at the bottom are the VecScatterEnd(). In each diagram, vertically parallel solid and dashed
lines indicate overlapped computation and communication.

with y = Ax. Since y = Ax and y = y + z are both launched on the default stream, their dependency is
automatically maintained. Note that both Figures 15(b) and (c) assume that the computation sandwiched
between VecScatterBegin/End() will not block the CPU thread so that MPI Isend() can be posted as soon
as possible. Therefore, without changes, they cannot be directly applied to CPU codes. They are currently
not in the PETSc release.

We tested these three matrix-vector product implementations with a sparse matrix (HV15R) from the
Florida sparse matrix collection [4]. The size of the matrix is 2,017,169, and it has 283,073,458 nonzeros.
For the three matrix-vector productstTested on one node of Summit with six GPUs and six MPI ranks,
the execution times were 918.9µs, 902.2µs, and 904.6µs, implementations, respectively. We can see that
MatMult(b) was 16.7µs faster than MatMult(a), which is close to a kernel launch time, indicating that the
launch time of y = Ax is effectively hidden in MatMult(b). However, MatMult(c) did not show an advantage
over MatMult(b). We show their timelines on rank 3 in Figures 16 and 17. We can see that the sparse matrix-
vector products (i.e., csrMv kernel) with the diagonal block and the off-diagonal block did overlap as we
expected. However, we also found that with overlapping, the kernel’s execution time was a little longer
than without overlapping, offsetting any gains from overlapping. Further investigation revealed the reason.
In CUDA, concurrent kernel execution requires that there be enough resources to accommodate multiple
kernels. Neither kernel can have enough resident thread blocks to fill up the GPU. Moreover, a streaming
multiprocessor (SM) can host thread blocks only from the same kernel. In our test, kernel y = Ax had a grid
of size (42025,1,1) and a thread block of size (16,8,1), while kernel z = Blvec had a grid of size (10507,1,1)
and a thread block of size (4,32,1) (note that the cuSPARSE library controls these kernel launch parameters).
However, the NVIDIA V100 GPU has 80 SMs, and each SM can have only 32 resident thread blocks, giving
a total of 2,560 resident thread blocks per GPU. Therefore, we saw an overlap only at the end of the first
kernel; presumably this was when some SMs were draining from the first kernel and became available for the
second one. Additionally, since sparse matrix-vector products are memory bandwidth bound, running two
sparse matrix-vector products concurrently limits only the memory bandwidth available to each and hurts
their performance. We predict that small compute-bound kernels would benefit from the design in Figure
15(c).
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* Launch y = Ax

* Execute y = Ax
* Overlap with MPI

* Launch y += B*lvec

* Execute y += B*lvec

Figure 16: Timeline of matrix-vector product with early launch of y = Ax. Note that the launch of kernel
y = Ax does not need to wait for the pack kernel to complete, but the kernel y = y + Blvec cannot start
until the kernel y = Ax has completed.

* Launch y = Ax

* Execute y = Ax
* Overlap with MPI

* Launch z = B*lvec 

* Execute z = B*lvec
* Overlap with y = Ax

* Launch y += z 

* Execute y += z

* cudaStreamWaitEvent

Figure 17: Timeline of matrix-vector product with concurrent kernels Ax and Blvec
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6 Discussion and Conclusion

Asynchronous computation on GPUs brings new challenges to MPI communication. The application or
software library’s communication module has to synchronize the device correctly and also provide efficient
pack/unpack kernels. In this report, we analyzed and tested PetscSF, the communication module in PETSc,
on Summit GPUs. We first measured GPU communication latencies with an MPI Ping-Pong benchmark,
which does not have any synchronizations or ppack/pack kernels, and therefore this performance provides
an upper bound for that of PetscSF. In Section 4 we introduced three synchronization models in PetscSF.
In Section 5.1 we evaluated a Ping-Pong test (sf pingpong) written in PetscSF under those models. From
the test results, we know the costs of the various CUDA synchronizations. We found that the extra overhead
introduced by PetscSF can be as low as 1µs. In Section 5.2 we introduced two new benchmarks (sf unpack
and sf scatter) that have unpacking and local communication. In these benchmarks we measured the kernel
launch cost and the effect of overlapping local and remote communication. In Section 5.3 we introduced index
optimizations in pack and unpack kernels with regular neighborhood communication. In this communication
pattern, with small (regular) domains, remote communication is the bottleneck, and with large domains,
local communication is the bottleneck. In Section 5.4 we evaluated PetscSF’s performance on irregular
neighborhood communication with a sparse matrix-vector multiplication kernel.

PetscSF’s default synchronization model assumes that the input data and output data are on the default
stream, so that we can avoid the cudaDeviceSynchronize() and cudaStreamSynchronize() calls before
the pack kernel and after the unpack kernel, respectively, an action that translates into a savings of 9µs.
The remaining synchronization is a cudaStreamSynchronize() call, which costs about 4µs and is denoted
by TStreamSync. With that, we can model the total time T of a general split-phase communication pattern
PetscSFXxxBegin(); userkernel(); PetscSFXxxEnd() as follows.

T = T (pack) + TStreamSync + max

{
lMPI ,

T (scatter)⊕ T (userkernel)

}
⊕ T (unpack) (4)

Here T (K) represents the time of kernel K, including the launch and execution time, and lMPI is the MPI
communication time. Again ⊕ indicates that the next kernel’s launch time could be overlapped with the
execution of the previous kernel.

The pack, unpack, and scatter kernels involve only simple operations on the elements (i.e., roots or
leaves) and are usually bandwidth bound. One can easily model their execution time as startuptime +

memory size
effectivebandwidth , where memory size is the total size of data that the kernel accesses, including both the
values and their indices if the memory access is irregular. The effective bandwidth depends on the access
pattern, which may be contiguous, strided, or random. One can write simple benchmarks to measure each
of these scenarios. The startup time is the time required to launch a CUDA kernel unless that time can
be hidden by currently running kernels. For point-to-point communication involving only a pair of ranks,
one can easily model lMPI with Eq. 1 in Section 3, and one could validate Eq. 4 using data from Sections
5.1 and 5.2. For communication involving multiple senders and receivers sharing communication links, we
do not have a reliable model. LogGP[1] might be an alternative, but we do not know how to validate it on
Summit. We leave this as an open question.

TStreamSync of 4µs seems not too high; however, the synchronization may block further kernel launches
in the pipeline, resulting in poor kernel launch time hiding, which could result in a time much higher than
the time of cudaStreamSynchronize() itself. For example, assume that we have five kernels A, B, C, D,
and E and that their execution time is 40µs, 5µs, 5µs, 5µs, and 5µs, respectively. Let us further assume that
a kernel launch costs 10µs. If kernel launches are fully pipelined, the total time for these five kernels is 70µs,
as shown in Figure 18(a). However, if there is a cudaStreamSynchronize() after the first kernel launch,
then the remaining launches will stall, and the total time will be 95µs, as shown in FIgure 18(b).

In Section 5.4 we introduced an approach that uses CUDA events to avoid having to call cudaStreamSynchronize(),
but this approach requires asynchronous operations between VecScatterBegin() and VecScatterEnd(), and
there cannot be too many such operations since we need to issue MPI Isend() as soon as possible. The ideal
solution would be to make MPI routines CUDA stream aware, such that a nonblocking MPI call worked as
an asynchronous kernel launch on a given stream and an MPI Wait() worked as a cudaEventSynchronize().
In this way, MPI calls would be regular nodes in the computation dependence graph, instead of a barrier in
it.
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Figure 18: Effect of synchronization in kernel launches. Without synchronization, the five kernels from A to
E take 70µs to finish. With a single cudaStreamSynchronize(), they take 95µs.
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